Search results

1 – 2 of 2
Article
Publication date: 28 February 2019

Timothy Oluseun Adekunle

The purpose of this paper is to examine the Summer performance, comfort, and heat stress in structural timber buildings. The research utilises building simulation as a tool to…

Abstract

Purpose

The purpose of this paper is to examine the Summer performance, comfort, and heat stress in structural timber buildings. The research utilises building simulation as a tool to investigate the performance of the case study buildings under non-extreme weather conditions.

Design/methodology/approach

The research explores three UK sites using the test reference year (TRY) weather files for the current and future weather conditions. The study focuses on the Summer performance and heat stress in non-extreme weather conditions; therefore, the Design Summer Year (DSY) weather files are not used for the simulations. The simulation data are calibrated and validated using the measured data from the field study.

Findings

The results revealed the mean predicted temperatures varied from 20.2–20.8°C for the 2000s. The mean temperatures for the 2030s ranged from 23.1 to 24.2°C. Higher temperatures are predicted at the buildings in the Southeast site than the Midlands and the Northwest sites. The results revealed that there is no significant improvement in the thermal environment when the floor area and the floor-to-ceiling height are increased. However, the study showed that the integration of different design interventions can improve the future performance and resilience of the buildings in various weather conditions.

Research limitations/implications

By applying the wet-bulb globe temperature (WBGT) and the Universal Thermal Comfort Index (UTCI) mathematical models to calculate the heat stress at the buildings, the study proposes the WBGT of 20.0°C and the UTCI of 24.1°C as possible heat stress indicators for occupants of the buildings in the 2030s.

Practical implications

On the one hand, the results revealed the maximum temperatures in some of the case study buildings exceed the comfort threshold (28°C). On the other hand, the study showed that occupants of the buildings are not prone to extreme Summertime overheating and heat stress under moderate weather conditions. However, different outcomes may be predicted if DSY weather files for the selected sites are considered.

Originality/value

This study is the first reported work to explore building simulation and mathematical equations to investigate Summer performance, comfort and heat stress indexes in timber buildings under moderate weather conditions in different regional sites in the UK.

Article
Publication date: 13 September 2019

Timothy Oluseun Adekunle

The purpose of this paper is to examine the seasonal performance, occupants’ comfort and cold stress in cross-laminated timber school buildings located in the USA (Northeast…

Abstract

Purpose

The purpose of this paper is to examine the seasonal performance, occupants’ comfort and cold stress in cross-laminated timber school buildings located in the USA (Northeast region).

Design/methodology/approach

The Fall survey was done from October–November 2017. In the Winter, it was considered from December 2017–February 2018. The study measured environmental parameters in the chosen spaces. The research applied the wet-bulb globe temperature (WBGT) model to determine the indexes in various seasons.

Findings

In the Fall, the average inside temperature was 21.2°C, the average RH was 50.7 per cent, and the mean dew-point was 9.3°C. The mean inside temperature was 20.5°C in the Winter while the mean RH was 23.9 per cent and the average dew-point was −1.9°C. The overall mean inside temperatures in both seasons were within the ASHRAE comfort temperature limits for cold seasons. During the surveys, higher average values of temperature, RH and dew-point were measured in the offices than the other spaces.

Practical implications

The research showed people might be subject to lower temperatures in the hall than the other spaces. Some design parameters and occupation hours may contribute to the lower temperatures reported in the hall than the different spaces.

Originality/value

The study proposes the WBGT of 16.0°C and 13.7°C as the stress indexes in the Fall and Winter seasons correspondingly. Last, the research suggests a WBGT of 14.9°C as the overall mean stress index within the spaces considered in this study.

Details

Smart and Sustainable Built Environment, vol. 9 no. 4
Type: Research Article
ISSN: 2046-6099

Keywords

1 – 2 of 2